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Abstract

Plots of the receiver operating characteristic (ROC) curve are ubiquitous in medical
research. Designed to simultaneously display the operating characteristics at every pos-
sible value of a continuous diagnostic test, ROC curves are used in oncology to evaluate
screening, diagnostic, prognostic and predictive biomarkers. I reviewed a sample of ROC
curve plots from the major oncology journals in order to assess current trends in usage and
design elements. My review suggests that ROC curve plots are often ineffective as statis-
tical charts and that poor design obscures the relevant information the chart is intended
to display. I describe my new R package that was created to address the shortcomings
of existing tools. The package has functions to create informative ROC curve plots, with
sensible defaults and a simple interface, for use in print or as an interactive web-based
plot. A web application was developed to reach a broader audience of scientists who do
not use R.
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1. Introduction

1.1. About ROC curves

The Receiver Operating Characteristic (ROC) curve is used to assess the accuracy of a con-
tinuous measurement for predicting a binary outcome. In medicine, ROC curves have a long
history of use for evaluating diagnostic tests in radiology and general diagnostics. ROC curves
originated in the field of signal detection theory.

For a continuous measurement that I denote as M , convention dictates that a test positive is
defined as M equalling or exceeding some threshold c: M ≥ c. The goal of ROC analysis is to
evaluate the classification accuracy of M in reference to the binary outcome D, which takes
possible values 0 (negative) or 1 (positive). It is implicitly assumed that the subpopulation
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D
1 0 Total

M ≥ c true positive false positive test positive
M < c false negative true negative test negative
Total disease positive disease negative

Table 1: Confusion matrix illustrating the possible classification outcomes of a continuous
test M with threshold c versus the true outcome D.

having D = 1 tends to have larger values of M compared to the subpopulation with D = 0.
The classification accuracy of M can be evaluated by considering the confusion matrix (Table
1). The confusion matrix cross-classifies the predicted outcomeM ≥ c versus the true outcome
D. The four cells of the matrix correspond to the possible classification outcomes: a true
positive, a false positive, a true negative, and a false negative. ROC analysis assesses the
trade-offs between the test’s fraction of true positives versus the false positives as c varies
over the range of M .

Formally, for a fixed cutoff c, the true positive fraction is the probability of a test positive in
the diseased population:

TPF (c) = P{M ≥ c|D = 1}

and the false positive fraction is the probability of a test positive in the healthy population:

FPF (c) = P{M ≥ c|D = 0}.

Since the cutoff c is not fixed in advance, one can plot the TPF against the FPF for all
possible values of c. This is exactly what the ROC curve is, a plot of FPF (c) on the x axis
and TPF (c) along the y axis as c varies. A useless test that is not informative at all in
regards to the disease status has TPF (c) = FPF (c) for all c. The ROC plot of a useless test
is thus the diagonal line. A perfect test that is completely informative about disease status
has TPF (c) = 1 and FPF (c) = 0 for at least one value c. If the assumption that support of
M |D = 1 is greater than that of M |D = 0 holds, then the ROC curve will lie in the upper left
quadrant above the diagonal line, however this may not be the case in a particular sample.

Given a sample of test and disease status pairs, (M1, D1), . . . , (Mn, Dn), one can estimate
the ROC curve by computing proportions in the diseased and healthy subgroups separately.
Specifically, given a fixed cutoff c, an estimate of the TPF (c) is the proportion of test positives
among the diseased subgroup:

̂TPF (c) =

∑n
i=1 1{Mi ≥ c} · 1{Di = 1}∑n

i=1 1{Di = 1}
,

where 1{·} is the indicator function that equals 1 when the condition inside the parentheses
is true and 0 otherwise. An estimate for FPF (c) is the proportion of test positives among
the healthy subgroup and is given by a similar expression with Di = 1 replaced with Di = 0.
Calculating these proportions for c equal to each unique value of the observed Mi yields what
is known as the empirical ROC curve estimate. The empirical estimate is a step function.
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Other methods exist to estimate the ROC curve, such as the binormal parametric estimate
which can be used to get a smooth curve. There are also extensions that allow for estimation
with time-to-event outcomes subject to censoring. For a more thorough reference on the
methods and theory surrounding ROC curves, interested readers may look to Pepe (2003).

A common way to summarize the value of a test for classifying disease status is to calculate
the area under the ROC curve (AUC). The greater the AUC, the more informative the test.
The AUC summarizes the complexities of the ROC curve into a single number and therefore
is widely used to facilitate comparisons between tests and across populations. It has been
criticized for the same reason because it does not fully characterize the trade-offs between
false- and true-positives.

1.2. Design considerations

The main purpose of visually displaying the ROC curve is to show the trade-off between the
FPF and TPF as the cutoff c varies. This can be useful for aiding viewers in choosing an
optimal cutoff for decision making, for comparing a small number of candidate tests, and for
generally illustrating the performance of the test as a classifier. In practice, once the FPF
and TPF are computed for each unique observed cutoff value, they can be plotted as a simple
line chart or scatter plot using standard plotting tools. This often leads to the unfortunate
design choice of obscuring the critical and useful third dimension, the range of cutoff values
c.

Another key design element is the use of a diagonal guideline for comparison. They allow
observers to roughly estimate the area between the diagonal and the estimated ROC curve,
which serves as a proxy for estimating the value of the test for classification above a useless
test. Likewise, gridlines inside the plotting region and carefully selected axes allow for accurate
assessment of the TPF and FPF at particular points along the ROC curve. Many medical
studies use ROC curves to compare a multitude of candidate tests to each other. In those
cases, curves need to be distinguished by using different colors or line types combined with a
legend, or direct labels inside the plotting region.

In the medical literature, FPF and TPF are usually referred to in terms of the jargon sensi-
tivity and specificity. Sensitivity is equivalent to the true positive fraction. Specificity is 1 -
FPF, the true negative fraction. Sometimes, the FPF and TPF are incorrectly referred to as
rates, using the abbreviations FPR and TPR. These are probabilities and their estimates are
proportions, therefore the use of the term fraction as opposed to rate is preferred.

1.3. Existing plotting software

The ROC curve plot is, at the most basic level, a line graph. Therefore, once the appropriate
statistics are estimated, existing plotting functions can be used to create an ROC curve plot.
Viewers can identify ROC plots through context, by observing the shape of the line, and
through the addition of axis labels, titles, legends, and so on. In a review of the oncology
literature, I observed plots with the distinctive characteristics of the plotting functions from
Microsoft Excel (Microsoft 2015), SAS (SAS Institute Inc. 2014), SPSS (IBM Corp. 2013),
and the base R plotting functions (R Core Team 2014).

There are several R packages related to ROC curve estimation that contain dedicated plotting
functions. The ROCR package (Sing, Sander, Beerenwinkel, and Lengauer 2005) plots the
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FPF versus TPF, as usual, and then takes the interesting approach of encoding the cutoff
values as a separate color scale along the ROC curve itself. A legend for the color scale is
placed along the vertical axis on the right of the plotting region. The pROC package (Robin,
Turck, Hainard, Tiberti, Lisacek, Sanchez, and Müller 2011) provides an option for plotting
cutoff labels (print.thres = TRUE) and is mainly focused on estimating confidence intervals
and regions for restricted ranges of the ROC curve. The plotting methods therein use the
base R plotting functions to create nice displays of the curves along with shaded confidence
regions. The plotROC package uses the ggplot2 (Wickham 2009) plotting package to create
clear, informative ROC plots, with interactive features for use on the web, and sensible defaults
for use in print.

1.4. Literature Review

Anyone giving a cursory look at any of the major medical journals is likely to find at least
one ROC curve plot. I sought to assess the usage of ROC curve plots and to evaluate the
design choices made in the current oncology literature by conducting a small literature review.
I searched Pubmed for clinical trials or observational studies in humans reported in major
oncology journals for the past 10 years for the terms “ROC Curve” OR “ROC Analysis” OR
“Receiver operating characteristic curve”. I conducted the search on October 8, 2014 and
it returned 54 papers. From those papers, I extracted and reviewed 47 images. The exact
specifications for the Pubmed query are available in the manuscript source files.

Each image consisted of a single ROC curve plot or a panel of multiple plots. I inspected each
plot manually for the following design features: the number of curves displayed, the type of
axis labels (sensitivity/ 1 - specificity or true/false positive fractions), presence or absence of
grid lines, presence or absence of a diagonal guide line, whether any cutpoints were indicated,
the type of curve label (legend or direct label), and presence of other textual annotations such
as the AUC. The numerical results of the survey are summarized in Table 2.

The small minority of the figures make any attempt to indicate the values of the test cutoffs,
which is an integral component of the ROC curve. I conjecture that this is mainly due to the
use of default plotting procedures in statistical software. The software, by default, treats the
ROC curve as a 2 dimensional object, obscuring the cutoff dimension. Gridlines and direct
labels are also somewhat out of the ordinary. The absence of these features make accurate
determination and comparison of the values more difficult. Many of the plots included large
tables containing estimates and inference for AUCs, while the ROC curves themselves, nu-
merous and without clear labels or reference lines, merely served as decoration. I aim to solve
some of these problems by providing an easy-to-use plotting interface for the ROC curve that
provides sensible defaults.

The panels of Figure 1 illustrate the most common styles of ROC curve plots, and the asso-
ciated design elements. I favor the use of gridlines and a diagonal reference line to facilitate
accurate readings off of the axes. Direct labels are preferred over legends because they omit
the additional cognitive step of matching line types or colors to labels. The plotROC pack-
age additionally provides plotting of cutoff values, which are displayed interactively with the
web-based output option, and direct labels for print use. Exact confidence regions for points
on the ROC curve are optionally calculated and displayed. Additionally, the use of axis scales
adjusted to be denser near the margins 0 and 1 facilitates accurate reading of FPF and TPF
values. In medical applications, it is often necessary to have a very low FPF (less than 10%,
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Percent (count)

Number of curves
1 19.6 (9)
2 43.5 (20)
3 10.9 (5)
4+ 26.1 (12)
Average (SD) 2.6 (1.5)

Axis labels
FPF/TPF 13.0 (6)
mixed 2.2 (1)
none 2.2 (1)
sens/spec 82.6 (38)

Diagonal Guide 43.5 (20)
Gridlines 17.4 (8)
Cutoffs indicated 15.2 (7)
AUC indicated 50.0 (23)
Curve Labels

direct 10.9 (5)
legend 63.0 (29)
none 19.6 (9)
title 6.5 (3)

Table 2: Results of a literature review of major oncology journals for ROC curve plots. The
rows indicate the frequency and count of key design elements of an ROC curve plot. FPR =
False positive rate; TPR = True positive rate; sens = Sensitivity; spec = Specificity; AUC =
Area under the Curve

for instance), therefore the smaller scales are useful for accurately determining values near
the margins. The next section details the usage of the plotROC R package and these features.

The vast majority of the figures that were reviewed looked more like those in panels A and B
than those in C and D. While plots like this do technically display the trade-offs between false-
and true-positives, they minimize the amount of useful information that can be displayed in
the space needed to plot an ROC curve. The plots created by plotROC attempt to increase the
amount of information displayed in ROC charts that would otherwise be mostly white space.
This is useful not only for print media, where space is limited, but also during data analysis.
The analyst can quickly and easily view information that would otherwise be obscured by
standard plotting software. The interactive features take this one step further, enhancing the
plots with high density and easily accessible supplementary information.

2. Usage of the package

2.1. Shiny application

A shiny application (RStudio Inc. 2014b) was created in order to make the features more acces-
sible to non-R users. A limited subset of the functions of plotROC can be performed on an ex-
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Figure 1: Illustration of design choices in plotting ROC curves. Panel A shows a sparse ROC
curve, with no design additions inside the plotting region. The plot results in more white
space than anything else. It is difficult to accurately determine values without reference lines.
Panel B shows a plot comparing 2 curves, with different line types and a legend. AUCs are
also given in the legend. Panels C and D add gridlines, diagonal reference lines, and direct
labels.
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ample dataset or on data that users upload to the website. Resulting plots can be saved to the
users’ machine as a pdf or as a stand-alone html file. It can be used in any modern web browser
with no other dependencies at the website here: http://sachsmc.shinyapps.io/plotROC.

2.2. Installation and loading

Users can install the latest version of plotROC from the Comprehensive R Archive Network
(CRAN). It can also be downloaded or installed from https://github.com/sachsmc/plotROC,
where active development will take place. plotROC also requires at least version 2.0.1 of
ggplot2 which is also available from CRAN.

R> install.packages(c("ggplot2", "plotROC"))

R> library(plotROC)

2.3. Quick start

After installing, the interactive Shiny application can be run locally.

R> shiny_plotROC()

2.4. Command line basic usage

I start by creating an example data set. There are 2 markers, one that is moderately predictive
and one that is not as predictive.

R> set.seed(2529)

R> D.ex <- rbinom(200, size = 1, prob = .5)

R> M1 <- rnorm(200, mean = D.ex, sd = .65)

R> M2 <- rnorm(200, mean = D.ex, sd = 1.5)

R>

R> test <- data.frame(D = D.ex, D.str = c("Healthy", "Ill")[D.ex + 1],

+ M1 = M1, M2 = M2, stringsAsFactors = FALSE)

The Roc Geom

As of version 2.0.1, the ggplot2 package (Wickham 2009) exports the previously internal func-
tions Geom and Stat. This enables developers to create their own statistical tranformations
(stats) and geometric layers (geoms), while enjoying all of the other features of ggplot2. I
have implemented the empirical ROC curve estimate and the calculation of exact confidence
regions as statistical transformations: stat_roc and stat_rocci, respectively. I have also de-
fined geometric layers for the ROC curve and confidence regions for the ROC curve: geom_roc
and geom_rocci, respectively. For further discussion and details of the grammar of graphics
as implemented in ggplot2, I refer readers to Wickham (2010) and the ggplot2 vignettes.

To use the ROC geometric layer, I use the ggplot function to define the aesthetic mappings,
and the geom_roc function to add an ROC curve layer. The geom_roc function requires that
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the named aesthetics d for disease status, and m for marker, be present in the aes function
call inside ggplot. By default, the ROC geom and stat are linked, so that when geom_roc

is called, stat_roc does the computation, and when stat_roc is called, geom_roc is used to
plot the layer. The disease status need not be coded as 0/1, but if it is not, stat_roc assumes
(with a warning) that the lowest value in sort order signifies disease-free status.

R> basicplot <- ggplot(test, aes(d = D, m = M1)) + geom_roc()

The geom_roc layer includes the ROC curve line combined with points and labels to display
the values of the biomarker at the different cutpoints. It accepts the argument n.cuts to
define the number of cutpoints to display along the curve. Labels can be supressed by using
n.cuts = 0 or labels = FALSE, however points will be displayed in the latter case. The
size of the labels and the number of significant digits can be adjusted with labelsize and
labelround, respectively.

R> ggplot(test, aes(d = D, m = M1)) + geom_roc(n.cuts = 0)

R> ggplot(test, aes(d = D, m = M1)) + geom_roc(n.cuts = 5,

+ labelsize = 5, labelround = 2)

R> ggplot(test, aes(d = D, m = M1)) + geom_roc(n.cuts = 50, labels = FALSE)

Confidence regions and the Rocci Geom

It is common to compute confidence regions for points on the ROC curve using the Clopper
and Pearson (1934) exact method. Briefly, exact confidence intervals are calculated for the
FPF and TPF separately, each at level 1−

√
1− α. Based on result 2.4 from Pepe (2003),

the cross-product of these intervals yields a 100∗(1−α) percent rectangular confidence region
for the pair.

This is implemented in the stat_rocci and displayed as a geom_rocci layer. These both
require the same aesthetics as the ROC geom, d for disease status and m for marker. By
default, a set of 3 evenly spaced points along the curve are chosen to display confidence
regions. Points corresponding to the confidence regions are distiguished from the others with
a different symbol. You can select points by passing a vector of values in the range of m to
the ci.at argument. By default, the significance level α is set to 0.05, this can be changed
using the sig.level option. An example is shown in Figure 2.

R> basicplot + geom_rocci()

R> ## basicplot + geom_rocci(sig.level = .01)

R> ## ggplot(test, aes(d = D, m = M1)) + geom_roc(n.cuts = 0) +

R> ## geom_rocci(ci.at = quantile(M1, c(.1, .4, .5, .6, .9)))

Styles and Labels

The same objects like basicplot with Roc and/or Rocci layers can be treated like any other
ggplot objects. They can be printed to display the figure, and other layers can be added to
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Figure 2: Illustration of plotROC with exact confidence regions.
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Figure 3: Illustration of ROC curve plot generated by plotROC with the styles and direct
labels applied for use in print.

the plot. I provide the function style_roc() which is a layer containing a theme, modified
gridlines, and axes. Adding the style_roc() layer to the ggplot object creates a plot with
sensible defaults for use in print. This function has options for the number and location of
major and minor breaks, addition of the diagonal guideline, axis labels, and any theme object
created for use with ggplot2 can be supplied.

The direct_label function takes a ggplot object as an argument and annotates the figure
with a direct label with a automatically chosen location. It attempts to intellegently select an
appropriate location for the label, but the location can be adjusted with nudge_x, nudge_y

and label.angle. If the labels argument is NULL, it will take the name from the mapped
aesthetic. A simple example with the default options is shown in Figure 3.

R> direct_label(basicplot) + style_roc()

R> ## basicplot + style_roc(theme = theme_grey, xlab = "1 - Specificity")

R> ## direct_label(basicplot, labels = "Biomarker", nudge_y = -.1)
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Interactive ROC plots

The basicplot object, which is of class ggplot, can be used to create an interactive plot and
display it in the Rstudio viewer or default web browser by passing it to the plot_interactive_roc
function. Give the function an optional path to an html file as an argument called file to
save the interactive plot as a complete web page. A screen shot of an interactive plot is shown
in Figure 4. Hovering over the display shows the cutoff value at the point nearest to the
cursor. Clicking makes the cutoff label stick until the next click, and if confidence regions are
available, clicks will also display those as grey rectangles. By default, plot_interactive_roc
removes any existing Rocci geom and adds a high-density layer of confidence regions. This
can be suppressed by using the add.cis = FALSE option. The points and labels layer of the
Roc geom can be hidden by using the hide.points = TRUE option. Then, points and labels
will be displayed only when the mouse is hovering over the plotting region. Also by default,
the style_roc function is applied, the settings can be modified by passing a call to that
function or setting it to NULL.

R> plot_interactive_roc(basicplot)

R> plot_interactive_roc(basicplot, hide.points = TRUE)

R> plot_interactive_roc(basicplot, style = style_roc(theme = theme_bw))

Users can export an interactive ROC plot by using the export_interactive_roc func-
tion, which returns a character string containing the necessary HTML and JavaScript. The
JavaScript source can be omitted by using the omit.js = TRUE option. Users may wish to do
this when there are multiple interactive figures in a single document; the source only needs
to be included once. The character string can be copy-pasted into an html document, or
better yet, incorporated directly into a dynamic document using knitr (Xie 2014). In a knitr
document, it is necessary to use the cat function on the results and use the chunk options
results = ’asis’ and fig.keep = ’none’ so that the interactive plot is displayed correctly.
For documents that contain multiple interactive plots, it is necessary to assign each plot a
unique name using the prefix argument of export_interactive_roc. This is necessary to
ensure that the JavaScript code manipulates the correct svg elements. For examples of in-
teractive plots and how to incorporate them into knitr documents, see the package vignette
(vignette("examples", package = "plotROC")) or the web page https://sachsmc.github.io/plotROC/.
The next code block shows an example knitr chunk that can be used in an .Rmd document
to display an interactive plot.

```{r int-no, results = 'asis', fig.keep = 'none'}
cat(

export_interactive_roc(basicplot,

prefix = "a")

)

```

Multiple ROC curves

If you have grouping factors in your dataset, or you have multiple markers measured on the
same subjects, you may wish to plot multiple ROC curves on the same plot. plotROC fully



12 plotROC: A Tool for Plotting ROC Curves

supports faceting and grouping as done by ggplot2. In my example dataset, there are 2
markers measured in a paired manner:

R> head(test)

D D.str M1 M2

1 1 Ill 1.48117155 -2.50636605

2 1 Ill 0.61994478 1.46861033

3 0 Healthy 0.57613345 0.07532573

4 1 Ill 0.85433197 2.41997703

5 0 Healthy 0.05258342 0.01863718

6 1 Ill 0.66703989 0.24732453

These data are in wide format, with the 2 markers going across 2 columns. ggplot2 requires
long format, with the marker result in a single column, and a third variable identifying the
marker. I provide the convenience function melt_roc to perform this transformation. The
arguments are the data frame, a name or index identifying the disease status column, and a
vector of names or indices identifying the the markers. Optionally, the names argument gives
a vector of names to assign to the marker, replacing their column names. The result is a data
frame in long format.

R> longtest <- melt_roc(test, "D", c("M1", "M2"))

R> head(longtest)

D M name

M11 1 1.48117155 M1

M12 1 0.61994478 M1

M13 0 0.57613345 M1

M14 1 0.85433197 M1

M15 0 0.05258342 M1

M16 1 0.66703989 M1

Then, the dataset can be passed to the ggplot function, with the marker name given as a
grouping or faceting variable. Some examples of its usage are given below.

R> ggplot(longtest, aes(d = D, m = M, color = name)) + geom_roc()

R> ggplot(longtest, aes(d = D, m = M)) + geom_roc() + facet_wrap(~ name)

R> ggplot(longtest, aes(d = D, m = M, linetype = name)) + geom_roc() + geom_rocci()

R> ggplot(longtest, aes(d = D, m = M, color = name)) + geom_roc()

R> pairplot <- ggplot(longtest, aes(d = D, m = M, color = name)) +

+ geom_roc(show.legend = FALSE)

R> direct_label(pairplot)

R>

R> pairplot + geom_rocci()

R> pairplot + geom_rocci(linetype = 1)
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Showing multiple curves is also useful when there is a factor that affects the classification
accuracy of the test. Let’s create another example dataset.

R> D.cov <- rbinom(400, 1, .5)

R> gender <- c("Male", "Female")[rbinom(400, 1, .49) + 1]

R> M.diff <- rnorm(400, mean = D.cov,

+ sd = ifelse(gender == "Male", .5, 1.5))

R>

R> test.cov <- data.frame(D = D.cov, gender = gender, M = M.diff)

R> bygend <- ggplot(test.cov, aes(d = D, m = M, color = gender)) +

+ geom_roc(show.legend = FALSE)

R> direct_label(bygend) + style_roc()

This example is displayed in Figure 5. Interactive versions of the plots with grouping and
faceting are fully supported.

2.5. Advanced options

Themes and annotations

plotROC uses the ggplot2 package to create the objects to be plotted. Therefore, users can
add themes and annotations in the usual ggplot2 way. A figure with a new theme, title, axis
label, and AUC annotation is shown in Figure 6. plotROC provides the convenience function
calc_auc that takes a ggplot object that has an Roc layer, extracts the data, and calculates
the AUC.

R> annotate <- basicplot + style_roc(theme = theme_grey) +

+ theme(axis.text = element_text(colour = "blue")) +

+ ggtitle("Themes and annotations") +

+ annotate("text", x = .75, y = .25,

+ label = paste("AUC =", round(calc_auc(basicplot)["AUC"], 2))) +

+ scale_x_continuous("1 - Specificity", breaks = seq(0, 1, by = .1))

The results are compatible with all other ggplot2 layers and functions, and interactive versions
are supported as long as there is an Roc layer present.

Other estimation methods

By default calculate_roc computes the empirical ROC curve. There are other estimation
methods out there, as summarized in the introduction. Any estimation method can be used, as
long as the cutoff, the TPF and the FPF are returned. Then you can simply pass those values
in a data frame to the ggplot function and override the default statistical tranformation to
stat_identity. For example, let us use the binormal method to create a smooth curve. This
approach assumes that the test distribution is normal conditional on disease status.
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R> D.ex <- test$D

R> M.ex <- test$M1

R> mu1 <- mean(M.ex[D.ex == 1])

R> mu0 <- mean(M.ex[D.ex == 0])

R> s1 <- sd(M.ex[D.ex == 1])

R> s0 <- sd(M.ex[D.ex == 0])

R> c.ex <- seq(min(M.ex), max(M.ex), length.out = 300)

R>

R> binorm.roc <- data.frame(c = c.ex,

+ FPF = pnorm((mu0 - c.ex)/s0),

+ TPF = pnorm((mu1 - c.ex)/s1)

+ )

R>

R> binorm.plot <- ggplot(binorm.roc, aes(x = FPF, y = TPF, label = c)) +

+ geom_roc(stat = "identity") + style_roc()

The example is shown in Figure 7. Interactive plots with stat = ’identity’ are not cur-
rently supported.

Another potential use of this approach is for plotting time-dependent ROC curves for time-
to-event outcomes estimated as desribed in (Heagerty, Lumley, and Pepe 2000). Here is an
example using the survivalROC package (Heagery and Saha-Chaudhuri 2013) for estimation:

\begin{Schunk} \begin{Sinput} R> library(survivalROC) R> survT <- rexp(350, 1/5) R>
cens <- rbinom(350, 1, .1) R> M <- -8 * sqrt(survT) + rnorm(350, sd = survT) R>
sroc <- lapply(c(2, 5, 10), function(t){ + stroc <- survivalROC(Stime = survT, status =
cens, marker = M, + predict.time = t, method = “NNE”, + span = .25 * 350ˆ(-.2)) +
data.frame(TPF = stroc[[“TP”]], FPF = stroc[[“FP”]], + c = stroc[[“cut.values”]], + time =
rep(stroc[[“predict.time”]], + length(stroc[[“FP”]]))) + }) R> R> sroclong <- do.call(rbind,
sroc) R> R> survplot <- ggplot(sroclong, aes(x = FPF, y = TPF, label = c, color = time))
+ + geom roc(labels = FALSE, stat = “identity”) \end{Sinput} \end{Schunk}

3. How it works

plotROC makes use of ggplot2 (Wickham 2009), gridSVG (Murrell and Potter 2014), and d3.js
(Bostock, Ogievetsky, and Heer 2011) to create interactive plots. The first step in the process
is to create ggplot objects with Roc and/or Rocci layers. They can be plotted and inspected
in the R console. These form the basis for both the print versions and the interactive versions
of the plots. Basic styling and labeling can be added with the style_roc and direct_label

functions.

plotROC makes interactive plots by first converting the ggplot object into a scalable vector
graphic (svg) object with the gridSVG::grid.export function. This function maps each
element of the plot to a corresponding element of the svg markup language. Interactivity is
then added using d3.js and JavaScript to manipulate those svg elements in response to users’
input. The main interactive feature is to display the cutoff labels at the points on the ROC
curve closest to the mouse cursor.

There are many ways to solve this with d3.js, but Voronoi polygons are a convenient and
efficient way to map the cursor location to approximately the nearest point on the ROC
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curve. For the set of cutoff points along the ROC curve, the d3.geom.voronoi function chain
computes a set of polygons overlaying the plotting region such that the area of each polygon
contains the region of the plot closest to it’s corresponding cutoff point. Hover events are
bound to the polygons so that when the mouse cursor moves around the plotting region,
the closest point on the ROC curve is made visible. Similarly, click events are bound to
the polygons so that the appropriate confidence region is made visible upon clicking. The
svg code and all necessary JavaScript code is returned in the character string provided by
export_interactive_roc.

This approach is similar to what is done in the gridSVG grid.animate function, which uses
the svg <animate /> tags. However, d3.js provides a much richer set of features. There
are several other R packages that aim to create interactive figures. The authors of animint
(Hocking, Sievert, and VanderPlas 2014) created an extensive JavaScript library that creates
plots in a similar way as ggplot2. A set of interactive features can be added to plots using d3.js.
ggvis (RStudio Inc. 2014a), rCharts (Reinholdsson, Russell, and Vaidyanathan 2014), and the
more recently released htmlwidgets (Vaidyanathan, Cheng, Allaire, Xie, and Russell 2014) all
leverage existing charting libraries written in JavaScript. qtlcharts (Broman 2015) uses a set
of custom JavaScript and d3.js functions to visualize data from genetic experiments. Their
general approach is to manipulate the data and record plotting options in R, and then pass
those objects to the charting libraries or functions that handle the rendering and interactivity.
plotROC lets R do the rendering, allowing the figures to be consistent across print and web-
based media, and retaining the distinctive R style. This also allows users to manipulate the
figures directly in R to suit their needs, using tools that are more accessible and familiar to
most R users. Then, the JavaScript adds a layer of interactivity to the rendered figures.

4. Discussion

Here I have illustrated the usage and described the mechanics of a new R package for creating
ROC curve plots. The functions are easy to use, even for non-R users via the web application,
yet have sufficient flexibility to meet the needs of power users. My approach to creating inter-
active plots differs from other interactive charting packages. I found that existing approaches
did not meet the highly specialized needs of plotting ROC curves. While ROC curve plots
can technically be created with even the most basic plotting tools, I find that specialized
functions make the results clearer and more informative. The functions are integrated into
the existing and popular ggplot2 package, so that all the benefits and features therein can be
used effectively.

4.1. Reproducibility note

This manuscript is completely reproducible using the source files. The output below indicates
the R packages and versions used. Compiling the pdf output also requires pandoc version
1.13.1 and pdflatex.

R> sessionInfo()

R version 3.2.4 (2016-03-10)

Platform: x86_64-apple-darwin13.4.0 (64-bit)
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Running under: OS X 10.11.4 (El Capitan)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] methods stats graphics grDevices utils datasets base

other attached packages:

[1] survivalROC_1.0.3 plotROC_2.0.1 ggplot2_2.1.0 xtable_1.8-2

[5] stringr_1.0.0 knitr_1.13

loaded via a namespace (and not attached):

[1] Rcpp_0.12.5 digest_0.6.9 grid_3.2.4

[4] plyr_1.8.3 gtable_0.2.0 formatR_1.4

[7] magrittr_1.5 evaluate_0.9 scales_0.4.0

[10] highr_0.6 stringi_1.0-1 tikzDevice_0.10-1

[13] labeling_0.3 tools_3.2.4 munsell_0.4.3

[16] colorspace_1.2-6 filehash_2.3
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Figure 4: Screen shot of an interactive plot created with plotROC being displayed in the
Rstudio viewer. Hovering the mouse cursor over the plot causes the cutoff label nearest to
the cursor to be displayed. Clicking will display a confidence region, if available, and make
the label stick until the next click. For live examples, see the package vignette, or go to
http://sachsmc.github.io/plotROC.
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Figure 5: Illustration of plotROC with multiple curves.
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Figure 6: Using ggplot2 themes and annotations with plotROC objects.



Journal of Statistical Software – Code Snippets 21

-1.8-1.3-0.8
-0.3

0.2

0.8

1.3

1.8

2.3
2.8

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00

False positive fraction

T
ru
e
p
os
it
iv
e
fr
ac
ti
o
n

Figure 7: Illustration of smooth binormal ROC curve.
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