
Approaches to software 
development



Balance is key

Costs/risks Benefits



Characteristics of good software

• Operational
• Correct
• Usable
• Efficient

• Transitional
• Portable
• Interoperable
• Adaptable

• Maintainable
• Modular
• Flexible



The basic lifecycle



Follow a process

• A process specifies when and how to approach the elements of the 
basic lifecycle
• Order of activities

• Entry and exit criteria

• There isn’t one best process

• It is critical when working as part of a team



Processes not to follow



Code and fix/rushing to code

• As soon as the problem is identified, begin coding

• Once something is working, it is reworked until it meets all 
requirements

• Probably the most used approach

• Intuitive, akin to dog-paddling, instead of swimming

• Key problem: refactoring is difficult, time consuming
• Risk of incorrectness

• Reduces interoperability & modularity



Classic waterfall

Feasibility •Prototyping

Requirements
•Analysis of 

needs

Design

Implementation

Testing



Drawbacks

• Code and fix lacks discipline
• Inefficient

• Sets you up for problems with maintenance and interoperability

• May be OK for small projects

• Classic waterfall is too rigid
• Does not manage risks well

• Difficult to adapt to changing requirements/new knowledge



Agile methods

- Iteration is good for managing risks
- Requirements develop and change over time
- Don’t stick to a plan at all costs
- Stick to a plan as long as it is limited in scope



Minimum viable package

What is the goal? 
Create a package that does something useful

- Don’t sacrifice functionality for generality
- Make something that works 
- Iteratively add features, make more general 

(if needed)

More features
More general

More complexity



Tools for managing complexity

Organization Documentation Code

R package man pages, 
code comments

Functions for abstraction

Folder structure Vignettes (also for developers) Classes for abstraction

File structure Github issues, 
contribution guidelines

Tests



The skateboard

Analysis
What do I want to do? 

Design
What specific steps do I need 

to take?

Implementation

Write the code for 
each step

Test

Does it work?



Improving and adding features
Analysis

What do I want 
to do? 

Design

What specific steps do I 
need to take?

Implementation

Write the code for 
each step

Test

Does it work?

Abstraction

- Moving steps into 
reusable functions

- Defining classes for 
data structures



Some examples



Sequential data analysis

clean_data() analyze_data() make_report()





Statistical method

Utility 1

User facing 
estimation 

function

print

plot

summary

objectUtility 2



Summary

• Follow a process, not too rigid, 
not too flexible

• Use abstraction to help *design* 
solutions

• R’s functional nature is useful for 
abstraction

• Tools are available to manage 
complexity at every level


