Approaches to software
development



Balance is key

Costs/risks Benefits

Improve
SCience
Academic
achievement
Work more
efﬁciently



Characteristics of good software

e Operational
* Correct
* Usable
» Efficient

* Transitional
* Portable
* Interoperable
* Adaptable

 Maintainable
* Modular
* Flexible



The basic lifecycle

Project
Initiation

Planning

m Implementation

Track & Control

Closeout

Project Life Cycle




Follow a process

* A process specifies when and how to approach the elements of the
basic lifecycle

e Order of activities
* Entry and exit criteria

* There isn’t one best process
* It is critical when working as part of a team



Processes not to follow



Code and fix/rushing to code

* As soon as the problem is identified, begin coding

* Once something is working, it is reworked until it meets all
requirements

* Probably the most used approach
* Intuitive, akin to dog-paddling, instead of swimming

* Key problem: refactoring is difficult, time consuming

* Risk of incorrectness
* Reduces interoperability & modularity



Classic waterfall

Feasibility ePrototyping

eAnalysis of

Requirements needs

Implementation

Testing




Drawbacks

e Code and fix lacks discipline
* |Inefficient
» Sets you up for problems with maintenance and interoperability
* May be OK for small projects

e Classic waterfall is too rigid
* Does not manage risks well
* Difficult to adapt to changing requirements/new knowledge



Agile methods

Time

Waterfall

[terative

P

Iteration is good for managing risks
Requirements develop and change over time
Don’t stick to a plan at all costs

Stick to a plan as long as it is limited in scope



Minimum viable package

What is the goal?
Create a package that does something useful

- Don’t sacrifice functionality for generality

- Make something that works

- lteratively add features, make more general
(if needed)

More features

More complexity
More general




Tools for managing complexity

R package man pages, Functions for abstraction
code comments

Folder structure Vignettes (also for developers) Classes for abstraction

File structure Github issues, Tests
contribution guidelines



The skateboard

Analysis

What do | want to do?

Test Design

. What specific steps do | need
Does it work? to take?

Implementation

Write the code for
each step




Improving and adding features

/

Test
Does it work?

!\

Analysis
What do | want

to do?

Implementation

Write the code for
each step

\

/

Abstraction

Moving steps into

reusable functions

Defining classes for
data structures




Some examples



Sequential data analysis

clean_data() analyze data() make_report()




Dependency graph

Egre~==u:\r'._ large
0.004s
file report. Rmnd ™ '

egresc on2_large
0.005s coef regress -:n2 arge
004s

regl - T temge Sy .- _sr'i"l'i-_'egresainrﬂ_large
e 4 0.008s * . 0.003s
- ~. regressioni_large (
Pas 0.0055
ey coef_regressioni_|ari
~ 0.004= ,..
; 4 \ Feport file report.md
™ ., /0.086s
! ; ’ e regras:u:\'ﬂ 5n1?|{
- 0.003s -

; _rmgrazziont_small-
” 0.0055 “. j,

'an-:h:u"_r:-ws,. 5'.*'31_ sSumm_regr EEEg/ﬂ smal
! 0.004s-, 0.004

‘chf regrassionZ_small
regressionZ_smial|_

0.004s
0.005s

datase rs ‘ @
summ_regressionz_smal
0.004s

>



Statistical method

Utility 1

Utility 2

User facing
estimation summary
function




summary

* Follow a process, not too rigid,
not too flexible

e Use abstraction to help *design*
solutions

* R’s functional nature is useful for
abstraction

* Tools are available to manage
complexity at every level

@ ©
oo—omg
©® ©® ©® ©

..,.ic%adsﬁ



