library(survival)
library(eventglm)
#> 
#> Attaching package: 'eventglm'
#> The following objects are masked from 'package:survival':
#> 
#>     colon, mgus2

Colon cancer treatment and time to death (standard survival)

Our first example concerns the colon dataset, which is included in the package:

?eventglm::colon

This is a randomized trial, so the main interest is in comparing the distributions of time to death between the three treatment arms. Let’s start with a survival curve.

sfit <- survfit(Surv(time, status) ~ rx, data = colon)
plot(sfit, col = c("black", "slateblue", "salmon"), 
     xlab = "days since registration", ylab = "survival")
legend("bottomleft", fill = c("black", "slateblue", "salmon"), 
       legend = names(sfit$strata))

As we know, hazard ratios are difficult to interpret as causal effects, even in randomized controlled trials. Better options for summarizing the effect of treatment are the survival at a particular time, or the restricted mean survival up to a given time. Let’s compare the survival at 7 years, or about 2500 days since registration.

plot(sfit[1], conf.int = FALSE, xlab = "days since registration", ylab = "survival")

seg0 <- summary(sfit[1], times = sfit[1]$time[sfit[1]$time <= 2500])
rect(c(0, seg0$time), 0, c(seg0$time, 2500), c(seg0$surv), 
     border = NA, col = "grey80")
lines(sfit[1], conf.int = FALSE)
abline(v = 2500, lty = 2)
points(x = 2500, y = summary(sfit[1], times = 2500)$surv)

In the figure above, we plot only the survival curve in the observation group. The vertical dotted line is at the time of interest (tmax = 2500 days). The open point is at the estimated survival probability at time tmax, i.e., \(P(T > tmax)\) and the shaded area represents the restricted mean survival up to tmax, i.e., \(E\{\min(T, tmax)\} = \int_0^{tmax} P(T > u) \, du\). We can estimate these things using the survival package:

colon.sfit <- summary(sfit, times = 2500, rmean = 2500)
colon.sfit
#> Call: survfit(formula = Surv(time, status) ~ rx, data = colon)
#> 
#>                 rx=Obs 
#>         time       n.risk      n.event     survival      std.err lower 95% CI 
#>     2.50e+03     5.00e+01     1.65e+02     4.55e-01     2.98e-02     4.00e-01 
#> upper 95% CI 
#>     5.18e-01 
#> 
#>                 rx=Lev 
#>         time       n.risk      n.event     survival      std.err lower 95% CI 
#>     2.50e+03     5.80e+01     1.57e+02     4.85e-01     2.92e-02     4.31e-01 
#> upper 95% CI 
#>     5.46e-01 
#> 
#>                 rx=Lev+5FU 
#>         time       n.risk      n.event     survival      std.err lower 95% CI 
#>     2.50e+03     6.50e+01     1.21e+02     5.88e-01     2.96e-02     5.33e-01 
#> upper 95% CI 
#>     6.49e-01

And we can now do inference using the eventglm package. First, we fit a regression model for the cumulative incidence, or 1 - survival:

colon.cifit <- cumincglm(Surv(time, status) ~ rx, time = 2500, data = colon)
summary(colon.cifit)
#> 
#> Call:
#> cumincglm(formula = Surv(time, status) ~ rx, time = 2500, data = colon)
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)  0.54345    0.02946  18.449  < 2e-16 ***
#> rxLev       -0.02907    0.04173  -0.697  0.48596    
#> rxLev+5FU   -0.13176    0.04186  -3.148  0.00165 ** 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for quasi family taken to be 1)
#> 
#>     Null deviance: 253.10  on 928  degrees of freedom
#> Residual deviance: 250.15  on 926  degrees of freedom
#> AIC: NA
#> 
#> Number of Fisher Scoring iterations: 2
se.ci <- sqrt(diag(vcov(colon.cifit, type = "robust")))
b.ci <- coefficients(colon.cifit)
conf.ci <- confint(colon.cifit)

We find that compared to observation alone, the Levamisole alone treatment group has a -0.03 difference in the cumulative incidence of death at 2500 days, with 95% confidence interval -0.11, 0.05, while the Levamisole plus 5-FU group has a -0.13 difference in the cumulative incidence of death at 2500 days, with 95% confidence interval -0.21, -0.05. This roughly agrees with the Kaplan-Meier estimates from survfit above:

cbind(eventglm = b.ci, 
      survfit = c(1 - colon.sfit$surv[1], 
  (1 - colon.sfit$surv[2:3]) - 
    (1 - rep(colon.sfit$surv[1], 2))))
#>                eventglm     survfit
#> (Intercept)  0.54345139  0.54479221
#> rxLev       -0.02907499 -0.02990601
#> rxLev+5FU   -0.13175778 -0.13301654

We can fit another model using the log link to obtain estimates of the log relative risks comparing the active treatment arms to the observation arm:

colon.rr <- cumincglm(Surv(time, status) ~ rx, time = 2500, 
                      data = colon, link = "log")
br.ci <- coefficients(colon.rr)
confr.ci <- confint(colon.rr)

We find that the estimated probability of death before 2500 days in the Levamisole alone arm is 0.95 times lower compared to observation with 95% confidence interval 0.81, 1.1 and the estimated probability of death before 2500 days in the Levamisole+5FU arm is 0.76 times lower compared to observation with 95% confidence interval 0.63, 0.9. If odds ratios are of interest, then the link = "logit" option can be used instead. Another interesting option is the link = "cloglog": the complementary log log link for the cumulative incidence implies proportional hazards. Thus models using the cloglog link applied at various time points can be used to assess the proportional hazards assumption (Perme and Andersen 2008). Other options for link functions are probit, inverse, \(\mu^{-2}\), square root, and users can define custom link function. It is not immediately clear what the interpretation of the regression coefficients would be in these cases, but they are possible. See the stats::family help file for more details.

Now for the restricted mean:

colon.rmfit <- rmeanglm(Surv(time, status) ~ rx, time = 2500, data = colon)
summary(colon.rmfit)
#> 
#> Call:
#> rmeanglm(formula = Surv(time, status) ~ rx, time = 2500, data = colon)
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept) 1667.403     49.949  33.382  < 2e-16 ***
#> rxLev         -6.074     71.739  -0.085  0.93253    
#> rxLev+5FU    194.954     70.498   2.765  0.00569 ** 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for quasi family taken to be 1)
#> 
#>     Null deviance: 734414066  on 928  degrees of freedom
#> Residual deviance: 726392934  on 926  degrees of freedom
#> AIC: NA
#> 
#> Number of Fisher Scoring iterations: 2
se.rm <- sqrt(diag(vcov(colon.rmfit, type = "robust")))
b.rm <- coefficients(colon.rmfit)
conf.rm <- confint(colon.rmfit)

We find that compared to observation alone, the Levamisole alone treatment group has a -6.07 difference in the mean time to death up to 2500 days, with 95% confidence interval -146.68, 134.53, while the Levamisole plus 5-FU group has a 194.95 difference in the mean time to death up to 2500 days, with 95% confidence interval 56.78, 333.13. Again, this roughly agrees with the Kaplan-Meier estimates from survfit above:

cbind(eventglm = b.rm, 
      survfit = c(colon.sfit$table[1, 5], 
colon.sfit$table[2:3, 5] - colon.sfit$table[1, 5]))
#>               eventglm     survfit
#> (Intercept) 1667.40308 1666.948078
#> rxLev         -6.07367   -5.708803
#> rxLev+5FU    194.95446  195.313754

A key advantage of the regression approach is that it gives us the ability to adjust or model other covariates. In this example, since it is a randomized trial, we know that all covariates are independent of treatment assignment. However, several variables are associated with time to death, so in this case they would be called “precision variables”. We would expect that adjusting for age, or the number of positive lymph nodes (more than 4) in the above models would reduce the standard error estimates of the treatment effects, without changing the coefficient estimates. Let’s find out:

colon.ci.adj <- cumincglm(Surv(time, status) ~ rx + age + node4, time = 2500, data = colon)
colon.rm.adj <- rmeanglm(Surv(time, status) ~ rx + age + node4, time = 2500, data = colon)
summary(colon.rm.adj)
#> 
#> Call:
#> rmeanglm(formula = Surv(time, status) ~ rx + age + node4, time = 2500, 
#>     data = colon)
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept) 2067.576    151.579  13.640  < 2e-16 ***
#> rxLev          3.421     67.516   0.051  0.95958    
#> rxLev+5FU    185.349     67.365   2.751  0.00593 ** 
#> age           -3.735      2.391  -1.562  0.11824    
#> node4       -644.960     64.854  -9.945  < 2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for quasi family taken to be 1)
#> 
#>     Null deviance: 734414066  on 928  degrees of freedom
#> Residual deviance: 650039827  on 924  degrees of freedom
#> AIC: NA
#> 
#> Number of Fisher Scoring iterations: 2

The estimates don’t change (much) and the standard errors reduce by about 5%.

Models for survival

If you would like to model the survival which is equal to one minus the cumulative incidence, it is straightforward. You can simply use the survival = TRUE option:

cumincglm(Surv(time, status) ~ rx, time = 2500, 
                      data = colon, survival = TRUE)
#> 
#> Call:  cumincglm(formula = Surv(time, status) ~ rx, time = 2500, data = colon, 
#>     survival = TRUE)
#> 
#> 
#> Model for the identity survival at time 2500 
#> 
#> Coefficients:
#> (Intercept)        rxLev    rxLev+5FU  
#>     0.45655      0.02907      0.13176  
#> 
#> Degrees of Freedom: 928 Total (i.e. Null);  926 Residual

Multiple time points (New in version 1.2.0)

Now you can specify a vector of times in cumincglm to get a model that assumes the effect of the covariate is constant over those times.

mvtfit1 <- cumincglm(Surv(time, status) ~ rx, 
        time = c(500, 1000, 1500, 2000, 2500),
        data = colon, survival = TRUE)
summary(mvtfit1)
#> 
#> Call:
#> cumincglm(formula = Surv(time, status) ~ rx, time = c(500, 1000, 
#>     1500, 2000, 2500), data = colon, survival = TRUE)
#> 
#> Coefficients:
#>                          Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)              0.829127   0.021793  38.046  < 2e-16 ***
#> factor(pseudo.time)1000 -0.170283   0.012340 -13.800  < 2e-16 ***
#> factor(pseudo.time)1500 -0.263039   0.014456 -18.196  < 2e-16 ***
#> factor(pseudo.time)2000 -0.314852   0.015290 -20.592  < 2e-16 ***
#> factor(pseudo.time)2500 -0.351750   0.016423 -21.419  < 2e-16 ***
#> rxLev                    0.003942   0.032530   0.121  0.90355    
#> rxLev+5FU                0.093737   0.031979   2.931  0.00338 ** 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for quasi family taken to be 1)
#> 
#>     Null deviance: 1091.5  on 4644  degrees of freedom
#> Residual deviance: 1009.4  on 4638  degrees of freedom
#> AIC: NA
#> 
#> Number of Fisher Scoring iterations: 2

In this model, the intercept is the survival probability in the Obs arm at time 500 (the reference time). The terms labeled factor(pseudo.time)t represent the change in the intercept associated with the time t. So, for example, the survival probability in the Obs arm at time 1000 is 0.83 + -0.17 = 0.66.

Looking at the survival curves in the figure above, the assumption of a constant treatment effect on the survival difference scale may be questionable. We can allow covariate effects to be time dependent by wrapping them in the special term tve() in the right side of the formula.

mvtfit2 <- cumincglm(Surv(time, status) ~ tve(rx), 
        time = c(500, 1000, 1500, 2000, 2500),
        data = colon, survival = TRUE)
summary(mvtfit2)
#> 
#> Call:
#> cumincglm(formula = Surv(time, status) ~ tve(rx), time = c(500, 
#>     1000, 1500, 2000, 2500), data = colon, survival = TRUE)
#> 
#> Coefficients:
#>                                    Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)                        0.850710   0.020078  42.370  < 2e-16 ***
#> factor(pseudo.time)1000           -0.178401   0.021560  -8.275  < 2e-16 ***
#> factor(pseudo.time)1500           -0.289898   0.025561 -11.341  < 2e-16 ***
#> factor(pseudo.time)2000           -0.345379   0.026875 -12.851  < 2e-16 ***
#> factor(pseudo.time)2500           -0.394161   0.028857 -13.659  < 2e-16 ***
#> factor(pseudo.time)500:rxLev       0.004138   0.028347   0.146  0.88395    
#> factor(pseudo.time)1000:rxLev     -0.017500   0.037805  -0.463  0.64343    
#> factor(pseudo.time)1500:rxLev     -0.002754   0.039739  -0.069  0.94474    
#> factor(pseudo.time)2000:rxLev      0.006751   0.040132   0.168  0.86641    
#> factor(pseudo.time)2500:rxLev      0.029075   0.041596   0.699  0.48456    
#> factor(pseudo.time)500:rxLev+5FU   0.027581   0.027476   1.004  0.31546    
#> factor(pseudo.time)1000:rxLev+5FU  0.074455   0.036360   2.048  0.04059 *  
#> factor(pseudo.time)1500:rxLev+5FU  0.116689   0.038753   3.011  0.00260 ** 
#> factor(pseudo.time)2000:rxLev+5FU  0.118203   0.039667   2.980  0.00288 ** 
#> factor(pseudo.time)2500:rxLev+5FU  0.131758   0.041722   3.158  0.00159 ** 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for quasi family taken to be 1)
#> 
#>     Null deviance: 1091.5  on 4644  degrees of freedom
#> Residual deviance: 1007.9  on 4630  degrees of freedom
#> AIC: NA
#> 
#> Number of Fisher Scoring iterations: 2

Now the coefficients labeled factor(pseudo.time)t:Covariate represent the covariate effect at time t. So, for example, the difference in survival probabilities of Levamisole plus 5-FU to Observation at time 1500 is

round(summary(mvtfit2)$coefficients[13,, drop = FALSE],2)
#>                                   Estimate Std. Error z value Pr(>|z|)
#> factor(pseudo.time)1500:rxLev+5FU     0.12       0.04    3.01        0

Compare with the estimate from survfit:

round(summary(sfit, times = 1500)$surv[3] - 
  summary(sfit, times = 1500)$surv[1], 2)
#> [1] 0.12

The key advantage of the regression approach is that we can adjust for covariates, do inference directly, and have more flexible models. The tve term allows you to have a mix of time-varying and time-constant effects. Just apply it to any covariate that you want to be time-varying.

Censoring assumptions

By default, we assume that time to censoring is independent of the time to the event, and of all covariates in the model. This is more restrictive than parametric survival models, or Cox regression, which only assumes that censoring time is conditionally independent of event time given the covariates in the model. We provide several options to relax that assumption using the model.censoring and formula.censoring options. The first is to compute stratified pseudo observations, which assumes that the censoring is independent given a set of categorical covariates:

colon.ci.cen1 <- cumincglm(Surv(time, status) ~ rx + age + node4, time = 2500, 
                           data = colon, model.censoring = "stratified", 
                           formula.censoring = ~ rx)

Next, we can assume that the time to censoring follows a Cox model given a set of covariates. By default, the same covariate formula (right hand side) as the main model is used, but any formula can be specified. We can also use Aalens additive hazards model instead of a Cox model for the censoring distribution. Then inverse probability of censoring weighted pseudo observations are used (Overgaard, Parner, and Pedersen 2019). According to our simulation study, the stratified option works quite well even when the censoring model is misspecified, and the Aalen additive model tends to work better than the Cox model.

colon.ci.cen2 <- cumincglm(Surv(time, status) ~ rx + age + node4, time = 2500, 
                           data = colon, model.censoring = "coxph", 
                           formula.censoring = ~ rx + age + node4)
colon.ci.cen3 <- cumincglm(Surv(time, status) ~ rx + age + node4, time = 2500, 
                           data = colon, model.censoring = "aareg", 
                           formula.censoring = ~ rx + age + node4)

round(cbind("indep" = coef(colon.ci.adj),
  "strat" = coef(colon.ci.cen1),
  "coxipcw" = coef(colon.ci.cen2),
  "aalenipcw" = coef(colon.ci.cen3)), 3)
#>              indep  strat coxipcw aalenipcw
#> (Intercept)  0.318  0.314   0.535     0.596
#> rxLev       -0.034 -0.035  -0.034    -0.036
#> rxLev+5FU   -0.127 -0.128  -0.127    -0.127
#> age          0.002  0.002   0.002     0.002
#> node4        0.332  0.334   0.335     0.334

In these models, the IPCW weights are returned in the element called “ipcw.weights”. If there are multiple time points, this will be a matrix with one column per time point.

colon.ci.cen2b <- cumincglm(Surv(time, status) ~ rx + age + node4, 
                            time = c(500, 1000, 2500), 
                           data = colon, model.censoring = "coxph", 
                           formula.censoring = ~ rx + age + node4)

head(colon.ci.cen2b$ipcw.weights)
#>           [,1]      [,2]      [,3]
#> [1,] 0.9988156 0.9988156 0.9936251
#> [2,] 0.9988733 0.9988733 0.3867807
#> [3,] 0.9983923 0.9983923 0.9983923
#> [4,] 1.0000000 1.0000000 1.0000000
#> [5,] 0.9984112 0.9984112 0.9984112
#> [6,] 0.9987135 0.9987135 0.9911426
summary(colon.ci.cen2b$ipcw.weights)
#>        V1               V2               V3        
#>  Min.   :0.9983   Min.   :0.9983   Min.   :0.2702  
#>  1st Qu.:0.9987   1st Qu.:0.9987   1st Qu.:0.4832  
#>  Median :0.9988   Median :0.9988   Median :0.9094  
#>  Mean   :0.9989   Mean   :0.9989   Mean   :0.7680  
#>  3rd Qu.:0.9989   3rd Qu.:0.9989   3rd Qu.:0.9988  
#>  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000

Monoclonal gammopathy data (Competing risks)

Our next example involves the mgus2 dataset, included in the package:

## ?mgus2
head(mgus2)
#>   id age sex dxyr  hgb creat mspike ptime pstat futime death etime event
#> 1  1  88   F 1981 13.1   1.3    0.5    30     0     30     1    30 death
#> 2  2  78   F 1968 11.5   1.2    2.0    25     0     25     1    25 death
#> 3  3  94   M 1980 10.5   1.5    2.6    46     0     46     1    46 death
#> 4  4  68   M 1977 15.2   1.2    1.2    92     0     92     1    92 death
#> 5  5  90   F 1973 10.7   0.8    1.0     8     0      8     1     8 death
#> 6  6  90   M 1990 12.9   1.0    0.5     4     0      4     1     4 death

This dataset has a number of covariates, and the time until progression to plasma cell malignancy (PCM), or death. Here the event PCM is of primary interest, with death being a competing event. The data are described and analyzed in the survival vignette (section 2.3.2):

crfit <- survfit(Surv(etime, event) ~ sex, eventglm::mgus2)
summary(crfit, times = 120)
#> Call: survfit(formula = Surv(etime, event) ~ sex, data = eventglm::mgus2)
#> 
#>                 sex=F 
#>      time    n.risk   n.event  Pr((s0))   Pr(pcm) Pr(death) 
#>  120.0000  214.0000  331.0000    0.4456    0.0739    0.4805 
#> 
#>                 sex=M 
#>      time    n.risk   n.event  Pr((s0))   Pr(pcm) Pr(death) 
#>  120.0000  210.0000  450.0000    0.3695    0.0553    0.5752
print(crfit, rmean = 120)
#> Call: survfit(formula = Surv(etime, event) ~ sex, data = eventglm::mgus2)
#> 
#>                n nevent    rmean*
#> sex=F, (s0)  631      0 82.983485
#> sex=M, (s0)  753      0 74.808346
#> sex=F, pcm   631     59  4.794595
#> sex=M, pcm   753     56  3.501305
#> sex=F, death 631    370 32.221921
#> sex=M, death 753    490 41.690349
#>    *restricted mean time in state (max time = 120 )

plot(crfit, col=1:2,  noplot="",
     lty=c(3,3,2,2,1,1), lwd=2, xscale=12,
     xlab="Years post diagnosis", ylab="P(state)")
legend(240, .65, c("Female, death", "Male, death", "malignancy", "(s0)"),
       lty=c(1,1,2,3), col=c(1,2,1,1), bty='n', lwd=2)
abline(v = 120, lty = 2)

We can get similar estimates for the cumulative incidence of pcm at 10 years and the expected lifetime lost due to pcm up to 10 years with similar commands as above. Note the cause option to specify the cause of interest.

mgfitci <- cumincglm(Surv(etime, event) ~ sex, cause = "pcm", time = 120, 
                   data = mgus2)
summary(mgfitci)
#> 
#> Call:
#> cumincglm(formula = Surv(etime, event) ~ sex, time = 120, cause = "pcm", 
#>     data = mgus2)
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)  0.07383    0.01086   6.800 1.04e-11 ***
#> sexM        -0.01857    0.01384  -1.342     0.18    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for quasi family taken to be 1)
#> 
#>     Null deviance: 88.507  on 1383  degrees of freedom
#> Residual deviance: 88.388  on 1382  degrees of freedom
#> AIC: NA
#> 
#> Number of Fisher Scoring iterations: 2

mgfitrmean <- rmeanglm(Surv(etime, event) ~ sex, cause = "pcm", time = 120, 
                       data = mgus2)
summary(mgfitrmean)
#> 
#> Call:
#> rmeanglm(formula = Surv(etime, event) ~ sex, time = 120, cause = "pcm", 
#>     data = mgus2)
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)   4.7926     0.7883   6.080  1.2e-09 ***
#> sexM         -1.2929     0.9902  -1.306    0.192    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for quasi family taken to be 1)
#> 
#>     Null deviance: 450225  on 1383  degrees of freedom
#> Residual deviance: 449652  on 1382  degrees of freedom
#> AIC: NA
#> 
#> Number of Fisher Scoring iterations: 2

Sex may be an important predictor of time to pcm, what about the other variables?

mgfitci2 <- cumincglm(Surv(etime, event) ~ sex + age + hgb, cause = "pcm", 
                      time = 120, data = mgus2)
mgfitrmean2 <- rmeanglm(Surv(etime, event) ~ sex + age + hgb, cause = "pcm", 
                      time = 120, data = mgus2)
summary(mgfitrmean2)
#> 
#> Call:
#> rmeanglm(formula = Surv(etime, event) ~ sex + age + hgb, time = 120, 
#>     cause = "pcm", data = mgus2)
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)
#> (Intercept)  3.98253    3.87360   1.028    0.304
#> sexM        -0.98992    0.99168  -0.998    0.318
#> age          0.04466    0.02941   1.518    0.129
#> hgb         -0.18754    0.25091  -0.747    0.455
#> 
#> (Dispersion parameter for quasi family taken to be 1)
#> 
#>     Null deviance: 448531  on 1370  degrees of freedom
#> Residual deviance: 447319  on 1367  degrees of freedom
#>   (13 observations deleted due to missingness)
#> AIC: NA
#> 
#> Number of Fisher Scoring iterations: 2

The objects returned by cumincglm and rmeanglm inherit from glm, so many methods are available. First, the vcov function has several options for calculation of the estimated variance of the estimated regression parameters. By default, the robust variance estimates are used, based on the Huber-White estimator. Other options are naive, and corrected, which are the corrected estimators suggested by Overgaard et al. (2017) which are based on a second order Von-Mises expansion. We can also use the bootstrap. This recalculated the pseudo-observations every time, but it is still pretty fast because of the C code. Let’s compare:

nboot <- 100 # use a bigger number for real
bootests <- matrix(NA, nrow = nboot, ncol = 4)
for(i in 1:nboot) {
  mgus.b <- mgus2[sample(1:nrow(mgus2), replace = TRUE), ]
  mgfitrmean.b <- rmeanglm(Surv(etime, event) ~ sex + age + hgb, cause = "pcm", 
                      time = 120, data = mgus.b)
  bootests[i,] <- coefficients(mgfitrmean.b)
}

se.boot <- sqrt(diag(cov(bootests)))
knitr::kable(cbind(se.boot = se.boot, 
      se.robust = sqrt(diag(vcov(mgfitrmean2))), 
      #se.corrected = sqrt(diag(vcov(mgfitrmean2, type = "corrected"))), 
      se.naive = sqrt(diag(vcov(mgfitrmean2, type = "naive")))), digits = 3)
se.boot se.robust se.naive
(Intercept) 3.950 3.874 4.749
sexM 1.009 0.992 1.012
age 0.031 0.029 0.041
hgb 0.275 0.251 0.253

The corrected estimator fails pretty often, because it doesn’t handle ties, and the benefits are negligible, and thus may be removed from the package in the future.

Residuals also work, using the scaling factor suggested by Perme and Andersen (2008), as do predictions. Predicted restricted means give a possible method to predict individual event times, while the predicted cumulative incidence should be probabilities. Note that with the identity link, the predicted cumulative incidence is not guaranteed to be between 0 and 1.

hist(predict(mgfitrmean2, newdata = mgus2), 
     xlab = "Predicted lifetime lost due to PCM", main = "")


mgus2$prob.pcm10 <- predict(mgfitci2, newdata = mgus2)
mgus2$pseudo.ci <- mgfitci$y
summary(mgus2$prob.pcm10)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
#> 0.05169 0.05559 0.05695 0.06348 0.07297 0.07522      13
cutps <- quantile(mgus2$prob.pcm10, seq(.1, .9, by = .1), na.rm = TRUE)
mgus2$prob.cut <- cut(mgus2$prob.pcm10, 
                      cutps)

pred.p <- cutps[-length(cutps)] + diff(cutps)
obs.p <- c(by(mgus2$pseudo.ci, mgus2$prob.cut, mean))

plot(obs.p ~ pred.p, xlab = "predicted", ylab = "observed")
abline(0, 1)

Relative survival/net survival

Following Professor Paul Lambert’s example here: https://pclambert.net/software/stpp/using_stpp/ , let’s load the datasets:

library(data.table)

# from https://pclambert.net/data/colon.dta
colon2 <- rio::import(system.file("extdata", "colon.dta", package = "eventglm"))
colon2$surv_mm_trunc <- ifelse(colon2$surv_mm > 120.5, 120.5, colon2$surv_mm)

colon2$death <- colon2$status %in% c(1, 2)
colon2$death[colon2$surv_mm > colon2$surv_mm_trunc] <- 0

# from https://pclambert.net/data/popmort.dta
lifetab <- data.table(rio::import(system.file("extdata", "popmort.dta", package = "eventglm")))

Now we will estimate the marginal relative survival using the approach described in Pavlič and Pohar Perme (2019), which is based on the estimator:

\[ RS(t) = n^{-1}\sum_{i = 1}^n\frac{PO_i(t)}{S_{P}(t | D)}, \]

where \(S_{P}(t | D)\) is the survival probability based on the life tables for the demographics \(D\) of patient \(i\), and \(PO_i(t)\) are the pseudo observations for time \(t\). We get the survival probability by merging with the life table estimates, and the pseudo observations from our package. The prob from the life tables is the probability of surviving one year, so to get the probability of surviving 5 and 10 years, we need to calculate the cumulative product estimates.


lifetab[, prob.5 := prod(lifetab[`_age` %in% .BY[["_age"]]:(.BY[["_age"]]+4) & 
                              `_year` %in% .BY[["_year"]]:(.BY[["_year"]]+4) & 
                                `_year` == .BY[["_year"]] - .BY[["_age"]] + `_age` &
                              sex == .BY[["sex"]] ]$prob, na.rm = TRUE), 
        by = c("sex", "_year", "_age")]

lifetab[, prob.10 := prod(lifetab[`_age` %in% .BY[["_age"]]:(.BY[["_age"]]+9) & 
                              `_year` %in% .BY[["_year"]]:(.BY[["_year"]]+9) & 
                                `_year` == .BY[["_year"]] - .BY[["_age"]] + `_age` &
                              sex == .BY[["sex"]] ]$prob, na.rm = TRUE), 
        by = c("sex", "_year", "_age")]


colon2 <- merge(colon2, lifetab, 
                by.x = c("sex", "yydx", "age"), 
                by.y = c("sex",  "_year", "_age"), all.x = TRUE, all.y = FALSE)

fit1 <- cumincglm(survival::Surv(surv_mm_trunc, death) ~ 1, data = colon2, time = 1 * 12)
fit5 <- cumincglm(survival::Surv(surv_mm_trunc, death) ~ 1, data = colon2, time = 5 * 12)
fit10 <- cumincglm(survival::Surv(surv_mm_trunc, death) ~ 1, data = colon2, time = 10 * 12)

colon2$po_1 <- 1 - fit1$y
colon2$po_5 <- 1 - fit5$y
colon2$po_10 <- 1 - fit10$y

knitr::kable(cbind(time = c(1, 5, 10), 
                   relsurv.pseudo = with(colon2, 
                                  c(mean(po_1 / prob), 
                                    mean(po_5 / prob.5), 
                                    mean(po_10 / prob.10)),
                                  ),
                   relsurv.pohar = c(0.682, 0.479, 0.441)), digits = 3)
time relsurv.pseudo relsurv.pohar
1 0.677 0.682
5 0.477 0.479
10 0.411 0.441

They are pretty close to those computed using the Pohar Perme estimator reported by Prof Lambert.

Case cohort sampling

Parner, Andersen, and Overgaard (2020) describe how to fit regression models with pseudo-observations that account for case-cohort sampling. This is sometimes done when survival times are observed for the full sample, but one or more of the covariates are costly to measure. Then the covariates are measured only on everyone who experienced an event, plus a random subsample of the remaining individuals.

The basic idea is weighted estimating equations, which we can implement easily with the weights argument that gets passed to glm.fit. First let’s create a case-cohort sample of the colon2 dataset by sampling the cancer deaths (status == 1) with probability 0.8, and a random subcohort with probability 0.1. The individuals who are not sampled have their covariates set to missing.

colon2$status2 <- factor(ifelse(colon2$status == 4, 0, colon2$status), 
                         labels = c("censored", "cancer death", "other death"))
subc <- rbinom(nrow(colon2), size = 1, p = .2)
samp.ind <- subc + (1 - subc) * (colon2$status == 1) * rbinom(nrow(colon2), size = 1, p = .9)
colon.cc <- colon2
colon.cc[!as.logical(samp.ind), c("age", "sex", "subsite")] <- NA
colon.cc$samp.wt <- 1 / ifelse(colon.cc$status == 1, .2 + .8 * .9, .2)

Now, the weighted regression model should give similar results as the unweighted one in the full sample:

cfit.cc <- cumincglm(Surv(surv_mm, status2) ~ age + sex + factor(subsite), 
                     cause = "cancer death", time = 5 * 12, data = colon.cc, 
                     weights = samp.wt)
cfit.full <- cumincglm(Surv(surv_mm, status2) ~ age + sex + factor(subsite), 
                     cause = "cancer death", time = 5 * 12, data = colon2)
knitr::kable(cbind(casecohort = coefficients(cfit.cc), 
      fullsamp = coefficients(cfit.full)), digits = 3)
casecohort fullsamp
(Intercept) 0.184 0.212
age 0.005 0.004
sex 0.002 0.000
factor(subsite)2 0.063 0.055
factor(subsite)3 0.003 -0.001
factor(subsite)4 0.024 -0.003

This works because the pseudo observations are computed using the full sample, which you can see from the rawPO element of the returned objects:

cfit.cc$rawPO |> mean()
#> [1] 0.5306154
cfit.full$rawPO |> mean()
#> [1] 0.5306154

References

Overgaard, Morten, Erik Thorlund Parner, Jan Pedersen, et al. 2017. “Asymptotic Theory of Generalized Estimating Equations Based on Jack-Knife Pseudo-Observations.” The Annals of Statistics 45 (5): 1988–2015.
Overgaard, Morten, Erik Thorlund Parner, and Jan Pedersen. 2019. “Pseudo-Observations Under Covariate-Dependent Censoring.” Journal of Statistical Planning and Inference 202: 112–22.
Parner, Erik T, Per K Andersen, and Morten Overgaard. 2020. “Cumulative Risk Regression in Case–Cohort Studies Using Pseudo-Observations.” Lifetime Data Analysis, 1–20.
Pavlič, Klemen, and Maja Pohar Perme. 2019. “Using Pseudo-Observations for Estimation in Relative Survival.” Biostatistics 20 (3): 384–99.
Perme, Maja Pohar, and Per Kragh Andersen. 2008. “Checking Hazard Regression Models Using Pseudo-Observations.” Statistics in Medicine 27 (25): 5309–28.