To get the most out of this tutorial, we recommend installing the development version of eventglm
. Choose one of the following options:
r-universe
[Option 1]install.packages("eventglm", repos = c(
ropensci = 'https://sachsmc.r-universe.dev',
CRAN = 'https://cloud.r-project.org'))
remotes::install_github("sachsmc/eventglm")
install.packages("eventglm")
eventglm
packageThe github page for eventglm
is https://github.com/sachsmc/eventglm . Documentation and vignettes are available in R and at https://sachsmc.github.io/eventglm .
To cite eventglm in publications use:
Sachs MC, Gabriel EE (2022). โEvent History Regression with Pseudo-Observations: Computational Approaches and an Implementation in R.โ Journal of Statistical Software, 102(9), 1-34. doi: 10.18637/jss.v102.i09 (URL: https://doi.org/10.18637/jss.v102.i09).
A BibTeX entry for LaTeX users is
@Article{,
title = {Event History Regression with Pseudo-Observations: Computational Approaches and an Implementation in {R}},
author = {Michael C. Sachs and Erin E. Gabriel},
journal = {Journal of Statistical Software},
year = {2022},
volume = {102},
number = {9},
pages = {1--34},
doi = {10.18637/jss.v102.i09},
}